Bi- und tricyclische $\lambda^5 \sigma^5$ -Phosphorane mit Kohlenstoff in axialer Position: Darstellung und Molekülstruktur

Rudolph Francke^a, William S. Sheldrick^{*b} und Gerd-Volker Röschenthaler^{*a}

Institut für Anorganische und Physikalische Chemie der Universität Bremen^a, Leobener Straße, D-2800 Bremen 33 Fachbereich Chemie der Universität Kaiserslautern^b, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern

Eingegangen am 20. Juli 1988

Keyword: $\lambda^5 \sigma^5$ -Phosphoranes

Aus den Isocyanatophosphiten 1a - d und (Z)-1,1,1,5,5,5-Hexafluor-4-hydroxy-3-penten-2-on (2) bzw. (Z)-1,1,1-Trifluor-4-hydroxy-3-penten-2-on (3) wurden bicyclische $\lambda^5 \sigma^5$ -Phosphorane, 4a - d und 5a, b in einer Doppelcycloaddition synthetisiert. Die äquatorial-axial-äquatoriale Anordnung des Bicyclus wurde für 4d und 5a durch Röntgenstrukturanalyse bestätigt. Auch in Lösung wurde aufgrund der ${}^{1}J_{PC}$ -Werte eine trigonal-bipyramidale Struktur mit Kohlenstoff in axialer Position gesichert.

In einer "Doppelcycloaddition"¹⁾ setzten sich Phosphor-(III)-isocyanate $(R^{1}O)_{2}$ PNCO (1**a**: $R^{1} = Me$, 1**c**: $R^{1} - R^{1} = CH_{2}CH_{2}$) mit (Z)-1,1,1,5,5,5-Hexafluor-4-hydroxy-3-penten-2-on (2)^{2,3)} (Enolform von 1,1,1,5,5,5-Hexafluor-2,4-pentandion) bzw. (Z)-1,1,1-Trifluor-4-hydroxy-3-penten-2-on (3)^{2,3)} (Enolform des 1,1,1-Trifluor-2,4-pentandions) zu bicyclischen Ringsystemen^{4,5)}, den Phosphoranen **4a** und **5c**, um.

Über Zwischenstufe A bildet sich vermutlich das [3 + 2]-Additionsprodukt B (Schema 1), in dem sich an die P = N-Doppelbindung die Z-ständige HO-Gruppe anlagert⁴⁾. Eine Dimerisierung^{5,6)} des Phosphazens B wurde nicht beobachtet, wohl aber in Lit.⁵⁾ beschrieben mit dem Hinweis auf Lit.⁴⁾, wo ein entsprechendes Diazadiphosphetidin allerdings nicht erwähnt ist. Die Strukturvorschläge für 4a und 5c wurden aufgrund von IR-, ¹H- und ³¹P-NMR-Daten getroffen. Wir haben das Studium von Phosphorderivaten des Hexafluorund Trifluoracetylacetons^{7,8)} auch auf Di- und Trialkylphosphite⁹⁾ sowie Isocyanatophosphite (R¹O)₂PNCO (1a: R¹ = Me¹⁰⁾, 1b: R¹ = Et¹⁰⁾, 1c: R¹ - R¹ = CH₂CH₂¹¹⁾, 1d: R¹ - R¹ = CMe₂CMe₂¹¹⁾, ausgedehnt.

Die Phosphite $1\mathbf{a} - \mathbf{d}$ wurden von den fluorierten Ketonen 2 und 3 in die Phosphorane $4\mathbf{a} - \mathbf{d}$ bzw. $5\mathbf{a}$ und **b**, farblose, hydrolyseempfindliche Feststoffe übergeführt. Im Falle von 3 entstanden nur Produkte, die auf einen nucleophilen Angriff des Phosphors von $1\mathbf{a}$ bzw. $1\mathbf{b}$ auf den der CF₃-Gruppe benachbarten Ketokohlenstoff schließen lassen. Eine mögliche Dimerisierung von **B** zu einem Diazadiphosphetidin^{5,6} ist offenbar wesentlich langsamer als die Bildung des anellierten Fünfringes, die nur dann möglich ist, wenn das Z-Isomere von Hexafluor-4-hydroxy-3-penten-2-on vorliegt. Geht man von einem E-Derivat von 2, nämlich z. B. (E)-1,1,1,5,5,5-Hexafluor-4-(trimethylsiloxy)-3-penten-2-on⁸,

Bicyclic and Tricyclic $\lambda^5 \sigma^5$ -Phosphoranes with Carbon in Axial Position: Synthesis and Molecular Structure

The bicyclic $\lambda^5 \sigma^5$ -phosphoranes $4\mathbf{a} - \mathbf{d}$ and $5\mathbf{a}$, \mathbf{b} were synthesized from the isocyanatophosphites $1\mathbf{a} - \mathbf{d}$ and (Z)-1,1,1,5,5,5-hexafluoro-4-hydroxy-3-penten-2-one (2) and (Z)-1,1,1-trifluoro-4-hydroxy-3-penten-2-one (3), respectively, by a double cycloaddition. The equatorial-axial-equatorial arrangement of the bicyclus was confirmed for 4d and 5a by X-ray structural analysis. The trigonal-bipyramidal structure in solution with carbon in axial position could be derived from the typical ${}^1J_{PC}$ values.

aus können sowohl das entsprechende Phosphazen als auch sein Dimeres beobachtet werden¹²). Eine Anellierungsreaktion läuft nicht ab.

Schema 1

4a-d, 5a-b

	R1	R ¹ -R ¹	R ²
4a	сн,		CF3
4 b	C₂H₅		CF_{3}'
4 c		CH ₂ CH ₂	CF ₃ '
4 d		CMezCMez	CF3′
5a	СН₃		сн₃
5 b	C,H₌		CH,

В

Molekülstruktur von 4d und 5a

Für trigonal-bipyramidale Derivate des pentakoordinierten Phosphors lassen sich zwei allgemeine Strukturregeln aufstellen¹³⁾:

(a) aus elektronischen Gründen besetzen die elektronegativsten Liganden bevorzugt die axialen Positionen,

(b) eine axial-äquatoriale (ae) Anordnung von vier- oder fünfgliedrigen Ringsystemen führt zu einer geringeren Ringspannung als für die alternative äquatorial-äquatoriale (ee) Anordnung.

Nur wenige Beispiele für Ringe in der diäquatorialen ee-Stellung sind bei den strukturell charakterisierten Phosphoranen bekannt. In den spirobicyclischen bzw. tricyclischen Derivaten $6-8^{14,15}$ mit sowohl ae- als auch ee-Ringanordnungen wird die erste Regel befolgt. Offensichtlich sind hier elektronische Faktoren ausschlaggebend für die beobachteten Ringplazierungen. Für bi- und tricyclische Phosphorane sind zwei Anordnungen der anellierten Ringsysteme möglich, die aea-Anordnung mit einem äquatorialen Brükkenkopf wie in der bicyclischen Verbindung 9¹⁶⁾ oder die eae-Anordnung mit einem axialen Brückenkopf wie im tricyclischen Beispiel 10^{17} . In 9 befindet sich das p_z -Orbital des planaren Brückenstickstoffatoms in der äquatorialen Ebene, was zu einer zusätzlichen Stabilisierung der aea-Anordnungen führt¹³. Die spannungsgünstigere ae-Plazierung des einfachen Ringsystems in 10 bewirkt die eae-Anordnung des Bicyclus.

In den beiden hier untersuchten Verbindungen 4d und 5animmt das Brückenkohlenstoffatom eine axiale Stellung ein, was deutlich im Widerspruch zu Regel 1 steht. Modellvorstellungen zeigen, daß eine äquatoriale Anordnung des sp³hybridisierten Kohlenstoffs C3 zu beträchtlichen Ringspannungen führt. Das Phosphoratom in 4d und 5a weicht nur geringfügig von der Kleinsten-Quadrat-Ebene durch die Atome O1, C1, C12 und C3 ab: **4d** P -5.8, O1 -0.7, C1 1.3, C12 -1.2, C3 0.6 pm; **5a** P -8.2, O1 0.3, C1 -0.5, C12 0.5, C3 -0.2 pm.

Für den zweiten Ring des Bicyclus ist die Abweichung des Phosphoratoms von den restlichen Atomen N2, C2, O3 und C3 deutlich größer: **4d** P -11.4, N2 0.4, C2 -0.6, O3 0.6, C3 0.3 pm; **5a** P -19.1, N2 -1.6, C2 2.8. O3 -2.7, C3 1.5 pm.

Eine aea-Anordnung würde zu wesentlich größeren Abweichungen von der Planarität führen und ist offensichtlich

Abb. 1. Molekülstruktur von 4d

Abb. 2. Molekülstruktur von 5a

B

deshalb energetisch ungünstiger als die eae-Anordnung. Durch die elektronenziehenden Substituenten CF_3 und O wird auch die effektive Elektronegativität und somit die "Apicophilie" des Brückenatoms C3 erhöht. In **4d** läßt die eae-Stellung des Bicyclus die bevorzugte ea-Plazierung des POCCO-Rings zu.

In seinen Bindungslängen unterscheidet sich der Bicyclus in 4d und 5a kaum. Auch die Abstände P-O4 [157.4(1) bzw. 156.9(1) pm] und P-O5 [162.6(1) bzw. 162.4(1) pm] sind in den beiden Derivaten einander sehr ähnlich, was auf eine geringe Spannung im monocyclischen Ringsystem von 4d hindeutet. Dagegen ist der äquatoriale P-O1-Abstand [164.8(1) bzw. 164.8(1) pm] im Bicyclus deutlich länger als der äquatoriale Abstand P-O4 und sogar länger als der axiale Abstand P-O5. Diese Tatsache kann als Indiz für die noch erhebliche Ringspannung im Bicyclus gedeutet werden. Typische Werte für P-O-Abstände bei acyclischen $\lambda^{5}\sigma^{5}$ -Phosphorverbindungen liegen in den Bereichen 155-160 (äquatorial) und 160-171 pm (axial). In gespannten planaren fünfgliedrigen Ringsystemen werden dagegen deutlich längere Abstände gefunden, 164-169 (äquatorial) bzw. 168 - 180 (axial)¹³⁾.

NMR-spektroskopische Untersuchungen

Die äquatorial-axial-äquatoriale Anordnung der beiden anellierten Fünfringe mit Kohlenstoff in axialer Position, die sich aus der Molekülstruktur für 4d und 5a in festem Zustand ergibt, läßt sich auch aus den für die axiale Position für Kohlenstoff^{18,19} typischen ${}^{1}J_{PC}$ -Werten von 117.9 bis 127.1 Hz ableiten (13C-NMR-Daten, Tab. 3), so daß die Strukturen C und D ausscheiden. Pseudorotationsvorgänge sind offenbar vollständig "eingefroren", da sowohl in 4a, b, als auch in 5a und 5b axiale und äquatoriale Methyl- und Ethylgruppierungen unterscheiden werden können. Das gleiche gilt auch für die Phospholan-Ringkohlenstoffatome. So sind die δ_{C} -Werte bei niedrigerem Feld äquatorialen, bei höherem Feld axialen Gruppierungen zuordnen²⁰⁾. Gleiches gilt auch für die δ_{H} -Werte von CH₃ bzw. CH₂ (Tab. 4) bei 4a-d bzw. 5a, b. Werte zu niedrigerem Feld entsprechen den äquatorialen, zu höherem Feld den axialen Resten²⁰.

Die magnetische Inäquivalenz ist auch auf die Anwesenheit eines chiralen Zentrums an C3 zurückzuführen. Die Bildung von Diastereomeren bei 4a - d bzw. 5a, b ist aufgrund

Tab. 1. Ausgewählte Bindungsabstände [pm] und Bindungswinkel [] von **4d**

P	-01	164.8(1)	C1 -C11	149.1(3)
Р	-04	157.4(1)	C1 -C12	130.2(3)
P	-05	162.6(1)	C4 -C5	153.9(3)
Р	-N2	167.2(2)	P -C3	195,5(2)
01	-P ~04	118.78(7)	C12-C3 -C31	110.9(2)
01	-P -05	90,93(7)	05 -P -C3	174.09(8)
01	-P -N2	116.12(8)	N2`-P -C3	84.7(8)
01	-P -C3	88,70(7)	P -C3 -O3	107.0(1)
04	-P -05	93.67(7)	P -C3 -C12	104,6(1)
04	-P -N2	124.87(8)	P -C3 -C31	119.3(1)
04	-P -C3	91.68(8)	03 -C3 -C12	110.9(2)
05	-P -N2	90.17(8)	03 -C3 -C31	104.0(2)

Tab. 2. Ausgewählte Bindungsabstände [pm] und Bindungswinkel [°] von 5a

P	-01	164.8(1)	C1 -C11	149.2(3)
Р	-04	156.9(1)	C1 -C12	130.5(3)
Р	-05	162.4(1)	P -C3	195.8(2)
Р	-N2	167.8(2)		
01	-P -04	113.66(8)	P -C3 -O3	106.4(1)
01	-P -05	91,71(7)	P -C3 -C12	104.5(1)
01	-P -N2	123.41(8)	P -C3 -C31	119.2(1)
01	-P -C3	88.28(8)	03 -C3 -C12	111.5(2)
04	-P -05	98.61(7)	03 -C3 ~C31	103.1(2)
04	-P -N2	122.26(8)	C12-C3 -C31	112.1(2)
04	-P -C3	89.39(8)	05 ~P -C3	171.25(8)
N2	-P -C3	84.48(9)	05 -P -N2	88.24(9)

Die trigonal-bipyramidale Geometrie des zentralen Phosphors ist in beiden Verbindungen leicht verzerrt. Dabei ist der O1 – P – N2-Winkel in **5a** mit 123.41(8)° deutlich aufgeweitet im Vergleich zu **4d** [116.12(8)°]. Die C3 – P – O5-Achse ist in beiden Derivaten geringfügig in Richtung auf N2 geknickt [174.09(9) bzw. 171.25(8)°]. Der N2 gegenüberliegende äquatoriale Winkel O1 – P – O4 beträgt 113.66(8)° in **5a**, was im Einklang mit einer Beschreibung der Verzerrung als "Anti-Berry" steht¹⁷⁾. Für **4d** dagegen unterscheidet sich dieser Winkel [118.78(7)°] nur wenig von dem idealen Wert.

Tab. 3. ¹³C{¹H}-NMR-Daten der Verbindungen 4a - d, 5a - b (*J* in Hz, δ -Werte bei höherem Feld als δ (TMS) sind negativ angegeben)

	C(2)	C(1)	C(31)	C(11) C(12) C(3)	CH 3
	(²J _{CP})	(²J _{CP})	(¹ J _{CF})	(¹ J _{CF} , ³ J _{CP}) (² J _{CP}) (¹ J _{CP} , ² J _C	F,) (u' _u 1 ^{Cb})
4a **	153.10 (32.3)	146.26 ^{a)} (8.1)	123,30 (280.6)	117.95 106.23 84.69 (271.8, 16.7) (12.8)(125.4, 32.	56.92 3) (2, 15.5) 54.20 (2, 9.7)
4 <u></u> ₽ ^{b)}	155.13 (31.1)	147.47 ^{c)} (?.5)	123.82 (280.7)	118.30 i06.64 86.12 (271.7, 16.6) (13.2)(127.4, 32.	$\begin{array}{r} 16.19 \\ 3) (3, 5.8) \\ 15.60 \\ (3, 4.5) \end{array}$
<u>4</u> c ^d)	152.20 (34.4)	148.20 ^{e)} (8.7)	123.81 (278.9)	117.98 106.82 83.00 (270.9, 16.3) (12.6)(120.6, 33.	9)
4ª ^{f)}	152.50 (32.8)	147.90 ⁸⁾ (8.6)	123.70 (281.0)	118.50 106.91 84.25 (269.2, 16.9) (12.3)(117.9, 33.	6)
5 <u>a</u>	143.54 (31.4)	156.95 (4.7)	123.75 (280.2)	15.01 100.19 86.07 (- , 10.1) (13.0)(121.9, 31.	55.51 4) (2, 15.4) 55.20 (2, 9.8)
<u>5</u> ⊵ ^{h)}	155.54 (30.4)	158,00 (4.3)	124,50 (280,1)	15.57 100.85 88.13 (- , 7.7) (13.4)(124.1, 31.	16.36 4) (3, 6.2) 15.89 (3, 4.9)

 ${}^{a_1} \, {}^2J_{\rm CF} = 40.5. - {}^{b_1} \, \delta = 68.20, \, 62.20 \, (\rm CH_2, \, {}^2J_{\rm CP} = 15.9, \, 10.1). - {}^{c_1} \, {}^2J_{\rm CP} = 40.1. - {}^{d_1} \, \delta = 65.14, \, 61.17 \, (\rm CH_2, \, \, {}^2J_{\rm CP} = 2.2, \, 4.3). - {}^{e_1} \, {}^2J_{\rm CF} = 40.8. - {}^{b_1} \, \delta = 86.19, \, 80.98 \, [\rm C(\rm CH_3)_2 C(\rm CH_3)_2, \, {}^2J_{\rm CP} = 3.1, \, 3.1]; \, 24.28, \, 24.10, \, 23.70, \, 22.62 \, [\rm C(\rm CH_3)_2 C(\rm CH_3)_2, \, {}^4J_{\rm CP} = 9.9, \, 6.2, \, 8.8, \, 9.2]. - {}^{g_1} \, {}^2J_{\rm CF} = 41.1. - {}^{b_1} \, \delta = 66.95, \, 61.54 \, (\rm CH_2, \, {}^2J_{\rm CP} = 15.8, \, 9.8).$

Tab. 4. ¹H-, ¹⁹F- und ³¹P-NMR-Daten der Verbindungen 4a-d, 5a-b (*J* in Hz)

	δ _H a)					δ _p a)	
	nh (²J _{ph})	=CH (³J _{PH})	" СН ₃ (л, ^п Ј _{РН})	CH₂.	CF3' (³J _{PF} '	CF ₃) (³ J _{PF})	•
<u>4a</u>	7.28 ^{b)}	6.15 ^{c)} (24.38)	3.80 (3, 13.96) 3.54 (3, 13.04)		-72.30 (2.40)	-73.22 (2.25)	-45.16
4₽	7.77 (9.80)	5.97 ^{d)} (23.72)	1.23 (4, 1.54) 1.29 (4, 1.54)	4.00- 4.22 ^{e)} 3.73- 3.91 ^{e)}	-73.06 (2.50)	-73.31 (2.00)	-47.80
4⊆	7.02 (7.90)	6.22 ^{f)} (22.19)		3.85- 4.65 ^{g)}	-72.86 (2.61)	-73.21 (2.06)	-26.73
<u>4</u> d	6.95 ^{b)}	6.06 ^{h)} (23.56)	1.43 ⁱ⁾ 1.36 ⁱ⁾ 1.35 ⁱ⁾		-73,21 (2,58)	-73.36 (2.01)	-34.70
<u>5a</u> j)	7.25 ^{b)}	5.26 ^{k)} (23.75)	· 3.77 (3, 13.92) 3.57 (3, 12.46)			-73.30	-47.13
5 <u></u> ₽ ¹⁾	7.56 (9.25)	5.24 ^{m)} (24.05)	$ \begin{array}{r} 1.27 \\ (4, 1.48) \\ 1.24 \\ (4, 1.45) \end{array} $	4.05- 4.24 ^{e)} 3.75- 4.01 ^{e)}		-73.54	-50.03

^{a)} Hochfeld von TMS, CCl₃F und 85proz. H₃PO₄ negativ angegeben. – ^{b)} Breites Signal. – ^{c) 4}J_{FH} = 1.20, ⁴J_{FH} = 0.85. – ^{d) 4}J_{FH} = 1.15, ⁴J_{FH} = 0.80. – ^{e)} A₃BB'X-Spektrum. – ^{f) 4}J_{FH} = 1.10, ⁴J_{FH} = 0.80. – ^{e)} AA'BB'X-Spektrum. – ^{h) 4}J_{FH} = 1.10, ⁴J_{FH} = 0.80. – ^{e)} Ring-CH₃. – ^{j)} δ = 1.97 (CH = CCH₃, ⁴J_{HH} = 1.22). – ^{k) 4}J_{FH} = 0.85. – ⁱ⁾ δ = 1.95 (CH = CCH₃, ⁴J_{HH} = 1.17). – ^{m) 4}J_{FH} = 0.80.

der eingeschränkten Anzahl von Reaktionskanälen nicht möglich. Modelle zeigen, daß aus **B** (mit zwei Enantiomeren) über einen nucleophilen Angriff des HO-Sauerstoffs an einer Kante des Tetraeders mit Phosphor im Zentrum²⁰⁾ ohne weitere Pseudorotation nur zwei spiegelbildlichen bicyclische Phosphorane gebildet werden.

Dem Fonds der Chemischen Industrie sei für Sachmittel gedankt, Dr. B. Wilkes, Kalichemie AG, Hannover, für die großzügige Überlassung von 2 und 3 und Frau I. Erxleben für die Aufnahme von Massenspektren.

Experimenteller Teil

Analysen: Mikroanalytisches Labor Beller, Göttingen. – IR-Spektren: Perkin-Elmer 577. Feststoffe als KBr-Preßlinge (sst = sehr stark, st = stark, m = mittel, schw = schwach). – NMR: Spektrometer AC-80 der Firma Bruker bei 80.0 MHz (¹H, Standard TMS), 75.0 MHz (¹⁹F, Standard CCl₃F), 32.3 MHz (³¹P, Standard 85% H₃PO₄) und 20.1 MHz (¹³C, Standard TMS). – MS: Spektrometer CH 7 der Firma Varian-MAT. – Die Verbindungen **1a** – **d** wurden nach Literaturverfahren dargestellt^{10,11}.

Röntgenstrukturanalyse von $4d^{21}$: C₁₂H₁₄F₆NO₅P kristallisiert aus Tetrahydrofuran monoklin, $P2_1/c$, mit a = .1455.1(4), b = 1021.3(3), c = 1205.5(4) pm, $\beta = 111.33(2)$, Z = 4, $D_c = 1.59$ g·cm⁻³. Größe des vermessenen Einkristalls 0.48 × 0.38 × 0.27 mm. Scangeschwindigkeit zwischen 0.91 und 5.03 min⁻¹; ω -Scan; Scanbreite 0.90 + 0.35 tan Θ . Von den 2925 gemessenen unabhängigen Reflexen wurden 2292 mit $F_{\phi}^2 \ge (F_{\phi}^2)$ als beobachtet cingestuft ($2\Theta \le 50^{\circ}$, Mo- K_2 , $\mu = 2.4$ cm⁻¹, Enraf-Nonius-CAD 4-Diffraktometer). Die Struktur wurde durch Dirckte Methoden (MULTAN-82) gelöst und zu R = 0.048, $R_w = 0.040$ verfeinert. Die Wasserstoffatome konnten frei verfeinert werden. Alle Nicht-Wasserstoffatome erhielten anisotrope Temperaturfaktoren. Gewichte waren durch die Gleichung $w = (\sigma^2(F_o) + 0.000025 F_o^2)^{-1}$ gegeben. Die maximale Restelektronendichte betrug 0.29 $e \cdot Å^{-3}$.

Tab. 5. Lageparameter der Atome von **4d** mit äquivalenten isotropen Temperaturfaktoren [Å²]

Atom	x/a	y/b	z/c	Ue o
P	0.2163(1)	-0.0029(1)	0.2499(1)	0.037(1)
F11	0.5285(2)	-0.0383(3)	0.3143(3)	0.130(1)
F12	0.4620(2)	-0.0633(3)	0.1303(2)	0.147(1)
F13	0.5217(1)	0.1206(2)	0.2005(2)	0.125(1)
F31	0.2709(1)	0.3975(2)	0.3056(2)	0.078(1)
F32	0.1660(1)	0.2848(2)	0.3514(2)	0.078(1)
F33	0.3208(1)	0.2452(2)	0.4352(2)	0.077(1)
01	0.3226(1)	-0.0420(2)	0.2390(2)	0.053(1)
02	0.0305(1)	0.1708(2)	-0.0148(2)	0.050(1)
03	0.1680(1)	0.2323(2)	0.1306(2)	0.046(1)
04	0.2125(1)	0.0209(2)	0.3771(1)	0.043(1)
05	0.1865(1)	-0.1567(2)	0.2474(2)	0.042(1)
N 2	0.1220(2)	0.0214(2)	0.1215(2)	0.041(1)
C1	0.3761(2)	0.0609(3)	0.2225(3)	0.052(1)
C2	0.1007(2)	0.1418(3)	0.0717(2)	0.041(1)
C 3	0.2464(2)	0.1813(3)	0.2350(2)	0.038(1)
C 4	0.1687(2)	-0.0871(3)	0.4229(3)	0.053(1)
C 5	0.1936(2)	-0.2076(3)	0.3624(3)	0.049(1)
C11	0.4715(2)	0.0191(4)	0.2139(3)	0.083(1)
C12	0.3411(2)	0.1791(3)	0.2165(3)	0.049(1)
C31	0.2502(2)	0.2764(3)	0.3335(3)	0.056(1)
C41	0.0582(2)	-0.0583(3)	0.3781(3)	0.070(1)
C42	0.2121(3)	-0.0823(4)	0.5564(3)	0.086(1)
C51	0.1219(2)	-0.3200(3)	0.3407(3)	0.067(1)
C52	0.2986(3)	-0.2572(4)	0.4258(3)	0.083(1)

Tab. 6. Lageparameter der Atome von **5a** mit äquivalenten isotropen Temperaturfaktoren [Å²]

Atom	x/a	y/b	z/c	Ue q
 Р	0.2234(1)	0.2814(1)	0.5877(2)	0.033(1)
F31	0.4812(3)	0.3215(3)	1.1135(4)	0.077(1)
F32	0.5805(3)	0.1547(3)	1.0758(4)	0.074(1)
F33	0.3270(3)	0.1510(3)	1.0448(4)	0.071(1)
01	0.1438(3)	0.1547(2)	0.3981(4)	0.041(1)
02	0.6513(3)	0.4170(3)	0.6409(5)	0.048(1)
03	0.5530(3)	0.2559(2)	0.7289(4)	0.046(1)
04	0.1639(3)	0.2948(2)	0.7959(4)	0.045(1)
05	0.0929(3)	0.3548(2)	0.4362(4)	0.041(1)
N 2	0.3757(3)	0.3772(3)	0.5814(5)	0.036(1)
C1	0.2221(4)	0.0550(4)	0.4369(6)	0.042(1)
C 2	0.5349(4)	0.3575(4)	0.6490(6)	0.036(1)
С 3	0.4021(4)	0.1988(3)	0.7445(6)	0.037(1)
C4	0.0766(5)	0.3875(4)	0.8729(7)	0.065(2)
C5	-0.0807(4)	0.3103(4)	0.3361(7)	0.054(1)
C11	0.1380(6)	-0.0571(4)	0.2635(8)	0.065(2)
C12	0.3576(5)	0.0725(4)	0.6129(7)	0.048(1)
C31	0.4457(5)	0.2071(4)	0.9947(7)	0.053(1)

Röntgenstrukturanalyse von **5** a^{211} : C₈H₁₁F₃NO₅P kristallisiert aus *n*-Hexan/Chloroform (9:1) triklin, *P*¹, mit *a* = 869.1(3), *b* = 1146.1(4), *c* = 640.4(3) pm, α = 100.66(2), β = 109.31(2), γ = 93.85(2), *Z* = 2, *D_c* = 1.64 g·cm⁻³. Größe des vermessenen Einkristalls 0.48 × 0.34 × 0.29 mm. Scangeschwindigkeit zwischen 0.96 und 4.02 min⁻¹; ω -Scan; Scanbreite 0.95 + 0.35 tan Θ . Von den 2069 gemessenen unabhängigen Reflexen wurden 1641 mit $F_o^2 \ge 2\sigma(F_o^2)$ als beobachtet eingestuft ($2\Theta \le 50^\circ$, Mo- K_{π} , μ = 2.8 cm⁻¹, Enraf-Nonius-CAD 4-Diffraktometer). Die Struktur wurde durch Direkte Methoden (MULTAN-82) gelöst und zu *R* = 0.058, $R_w = 0.054$ verfeinert. Die Wasserstoffatome konnten frei verfeinert werden. Alle Nicht-Wasserstoffatome erhielten anisotrope Temperaturfaktoren. Gewichte waren durch die Gleichung $w = (\sigma^2(F_o) + 0.000025 F_o^2)^{-1}$ gegeben. Die maximale Restelektronendichte betrug 0.32 e·Å⁻³.

Tab. 7. Reaktionsbedingungen zur Darstellung von 4a-d, 5a, b

Produkt	Reaktanden/g(mmol)	Schmp. [C]	Ausb. [g(%)]
4a ^{a)}	1 a 2.0 (15.0) 2 3.2 (15.0)	122 (Zers.)	3.7 (71)
4b ^{b)}	1 b 1.8 (11.3) 2 2.3 (11.3)	68	2.7 (65.5)
4 c ^{c)}	1 c 3.0 (22.5) 2 4.7 (22.5)	124 (Zers.)	5.6 (72.6)
4d ^{d)}	1 d 2.7 (14.4) 2 3.0 (14.4)	192 (Zers.)	3.7 (65)
5a°	1a 2.0 (15.0) 3 2.3 (15.0)	146 (Zers.)	2.8 (64.3)
5b ^{c)}	1b 4.7 (30.0) 3 4.6 (30.0)	124 (Zers.)	5.6 (60.3)

^{a)} Aus THF/CHCl₃ (4:1) umkristallisiert. $-^{b)}$ Aus *n*-Hexan umkristallisiert. $-^{c)}$ Aus *n*-Hexan/CHCl₃ (9:1) umkristallisiert. $-^{d)}$ Aus THF umkristallisiert.

Allgemeine Arbeitsbedingungen zur Darstellung von $4\mathbf{a} - \mathbf{d}$ und $5\mathbf{a}, \mathbf{b}$: Zu 2 bzw. 3 in 5 ml Chloroform wurde unter Rühren innerhalb 1 h das entsprechende Isocyanatophosphit 1 getropft. Nach Entfernen des Lösungsmittels i. Vak. wurden die Rohprodukte umkristallisiert.

1,1-Dimethox y-5,7-bis(trifluormethyl)-4,8-dioxa-2-aza-1- $\lambda^5 \sigma^5$ phosphabicyclo[3.3.0]oct-6-en-3-on (**4a**)⁴¹: MS (Quellentemp. 90 C): m/z (%) = 343 (M⁺, 1), 312 (M⁺ - HNCO, 78), 285 (M⁺ -HNCO - CH₃, 6), 281 (M⁺ - HNCO - F, 12), 269 (M⁺ -HNCO - OCH₃, 4), 246 (M⁺ - CF₃CO, 11), 231 (M⁺ -HNCO - CF₃, 6), 230 (M⁺ - CF₃ - CO₂, 9), 219 (M⁺ -C₃F₃O₂, 5), 109 [(MeO)₂PO⁺, 16], 93 [(MeO)₂P⁺, 100], 81 (C₂F₃⁺, 19), 69 (CF⁺, 13) und andere Fragmentc. - IR: 3446 cm⁻¹ st (v_{NH}); 3226 m (v_{CO} + δ_{NH}); 3115 m, 2997 m, 2866 schw, 2803 schw (v_{CH}); 1761 sst (v_{CO}); 1693 m (v_{C=C}); 1387 m, 1324 m (δ_{NH} und δ_{CH}); 1294 st, 1266 sst, 1200 sst, 1167 sst, 1155 sst, 1131 st (v_{CF}); 1104 m, 1065 sst, 997 m, 975 schw, 906 schw, 886 m, 825 m, 813 m, 773 m, 731 m, 719 m, 696 m, 634 schw, 610 schw, 587 m.

1.1-Diethoxy-5.7-bis(trifluormethyl)-4.8-dioxa-2-aza- $t\lambda^5\sigma^5$ -phosphabicyclo[3.3.0]oct-6-en-3-on (**4b**): MS (Quellentemp. 80 C): m/z (%) = 371 (M⁺, 5), 328 (M⁺ - HNCO, 6), 326 (M⁺ - OCH₂CH₃, 38), 298 (M⁺ - HNCO - 2CH₃, 62), 272 (M⁺ - CF₃ - 2CH₃, 48), 252 (M⁺ - CH₃ - OCH₂CH₃ - HNCO₂, 65), 69 (CF₃⁺, 53), 45 (CH₃CH₂O⁺, 45), 43 (HNCO⁺, 15), 29 (CH₃CH₂⁺, 100) und andere Fragmente. - IR: 3432 cm⁻¹ m (v_{NH}); 3229 m (v_{CO} + δ_{NH}); 3117 m, 2994 m, 2994 m, 2920 m (v_{CH}); 1764 sst (v_{CO}); 1695 m (v_{C =}c); 1386 st, 1324 st (δ_{NH} und δ_{CH}); 1296 st, 1265 sst, 1205 sst, 1163 sst, 1138 sst (v_{CE}); 1104 st, 1062 sst, 1046 sst, 983 m, 949 m, 883 m, 832 m, 806 m, 768 m, 734 m, 722 m, 699 schw, 633 schw, 597 m, 502 m, 418 schw.

Spiroverbindung 4c: MS (Quellentemp. 65 °C): m/z (%) = 341 (M⁺, 1), 311 (M⁺ - OCH₂, 7), 298 (M⁺ - HNCO, 87), 271 (M⁺ - CH₃ - H, 16), 238 (M⁺ - HNCO - C₂H₄O₂, 9), 91 [P(OCH₂CH₂O)⁺, 100], 69 (CF₃, 15), 43 (HNCO, 20) und andere Fragmente. - IR: 3302 cm⁻¹ m (v_{NH}); 3234 m (v_{C0} und δ_{NH}); 3099 m, 3030 schw, 2914 schw, 2899 schw, 2785 schw (v_{CH}); 1779 sst (v_{C0}); 1689 m (v_{C=C}); 1483 m, 1384 sst, 1351 m, 1312 sst (δ_{NH} und δ_{CH}); 1297 sst, 1282 sst, 1261 sst, 1214 sst, 1175 sst, 1133 sst (v_{CF}); 1100 st, 1061 sst, 1001 m, 981 schw, 944 sst, 919 m, 883 st, 842 sst, 810 m, 787 sst, 740 st, 720 st, 705 st, 672 st, 638 m, 627 m, 575 m, 555 schw, 540 schw, 527 st, 515 st, 467 schw, 453 schw, 418 m, 399 schw.

 $C_8H_6F_6NO_5P$ (341.1) Ber. C 28.17 H 1.77 F 33.42

Gef. C 28.03 H 1.89 F 33.10

Spiroketon 4d: MS (Quellentemp. 100 °C): m/z (%) = 397 (M⁺, 1), 382 (M⁺ - CH₃, 3), 354 (M⁺ - HNCO, 1), 339 (M⁺ -HNCO - CH₃, 5), 298 (M⁺ - C₆H₁₁O, 2), 85 (CF₃O⁺, 33), 83 (C₆H₁₁, 100), 59 (C₃H₇O⁺, 38), 43 (HNCO⁺, 31) und andere Fragmente. -- IR: 3441 cm⁻¹ (v_{NH}); 3211 m (v_{CO} + δ_{NH}); 3134 m, 3103 m, 2997 schw, 2951 schw, 2774 schw (v_{CH}); 1770 sst (v_{CO}); 1693 m (v_{C=C}); 1388 st, 1323 m (δ_{NH} und δ_{CH}); 1295 st, 1265 sst, 1222 st, 1204 sst, 1194 sst, 1267 sst, 1155 sst, 1132 sst (v_{CF}); 1016 m, 980 sst, 971 sst, 952 st, 906 m, 879 st, 816 m, 799 st, 778 m, 752 st, 738 m, 723 m, 703 schw, 680 m, 667 m, 626 m, 573 schw, 539 m, 487 schw, 462 schw.

C₁₂H₁₄F₆NO₅P (397.2) Bcr. C 36.29 H 3.55 F 28.70 Gef. C 36.44 H 3.40 F 28.90

1,1-Dimethoxy-7-methyl-5-(trifluormethyl)-4,8-dioxa-2-aza-1λ⁵σ⁵-phosphabicyclo[3.3.0]oct-6-en-3-on (**5a**): MS (Quellentemp. 120 C): m/z (%) = 289 (M⁺, 1), 258 (M⁺ - OCH₃, 28), 246 (M⁺ - HNCO, 99), 231 (M⁺ - HNCO - CH₃, 17), 227 (M⁺ -HNCO - F, 5), 215 (M⁺ - HNCO - OCH₃, 8), 192 (M⁺ -CH₃CO, 8), 177 (M⁺ - CH₃ - HNCO, 3), 164 (M⁺ - CH₃C -CO₂, 12), 109 [(MeO)₂PO⁺, 33], 93 [(MeO)₂P⁺, 100], 43 (HNCO⁺, 21) und andere Fragmente. - IR: 3438 cm⁻¹ m (v_{NH}); 3224 m (v_{CO} + δ_{NH}); 3103 schw, 2965 schw, 2929 schw, 2857 schw, 2763 schw (v_{CH}); 1754 sst (v_{CO}); 1684 st (v_{C=C}); 1440 m, 1390 st, 1378 m, 1332 st, 1316 st (δ_{NH} und δ_{CH}); 1283 st, 1194 sst, 1168 sst, 1130 sst (v_{CF}); 1063 sst, 1038 sst, 990 m, 962 m, 928 m, 907 m, 814 st, 778 st, 750 st, 731 m, 704 st, 666 m, 597 sst, 569 m, 551 schw, 533 schw, 458 m.

1,1-Diethoxy-7-methyl-5-(trifluormethyl)-4,8-dioxa-2-aza-1λ⁵σ⁵phosphabicyclo[3.3.0]oct-6-en-3-on (**5b**): MS (Quellentemp. 120[°]C): m/z (%) = 317 (M⁺, 4), 274 (M⁺ - HNCO, 28), 272 (M⁺ -OCH₂CH₃, 37), 244 (M⁺ - 2CH₃ - HNCO, 66), 218 (M⁺ -CF₃ - 2CH₃, 24), 198 (M⁺ - HNCO₂ - OCH₂CH₃ - CH₃), 69 (CF₃⁺, 16), 43 (HNCO⁺, 100) und andere Fragmente. - IR: 3444 cm⁻¹ m (v_{NH}); 3226 m (v_{CO} + δ_{NH}); 3108 m, 2984 m, 2939 m (v_{CH}); 1749 sst (v_{CO}); 1685 m (v_{C=}c); 1437 schw, 1390 m, 1366 m, 1338 st, 1307 m (δ_{NH} und δ_{CH}); 1281 st, 1198 st, 1160 sst, 1128 sst (v_{CF}); 1058 sst, 1011 m, 992 m, 981 m, 964 schw, 947 schw, 926 m, 894 schw, 813 m, 790 m, 779 schw, 762 st, 735 m, 718 m, 663 schw, 587 m, 570 schw, 531 schw, 514 schw.

 $\begin{array}{rrrr} C_{10}H_{15}F_{3}NO_{5}P \ (317.2) & \mbox{Ber. C} \ 37.87 \ H \ 4.77 \ F \ 17.97 \\ & \mbox{Gef. C} \ 37.95 \ H \ 4.71 \ F \ 17.80 \end{array}$

CAS-Registry-Nummern

1a: 61385-80-6 / 1b: 31334-44-8 / 1c: 17419-12-4 / 1d: 72666-66-1 / 2: 1694-30-0 / 3: 7291-30-7 / 4a: 117020-30-1 / 4b: 116952-03-5 / 4c: 116952-04-6 / 4d: 116952-05-7 / 5a: 97462-00-5 / 5b: 116952-06-8

- ¹⁾ Zu dem Begriff "Doppelcycloaddition" siehe A. Schmidpeter, W. Zeiß, D. Schomburg, W. S. Sheldrick, Angew. Chem. 92 (1980) 860.
- ²¹ J. L. Burdett, M. T. Rogers, J. Am. Chem. Soc. 86 (1964) 2105.
- ³⁾ R. L. Lintredt, H. F. Höltzelaw jr., J. Am. Chem. Soc. **88** (1966) 2713.
- ⁴⁾ I. V. Konovalova, L. A. Burnaeva, N. M. Kashtanova, R. D. Gareev, A. N. Pudovik, *Zh. Obshch. Khim.* **54** (1984) 2445.
- ⁵⁾ A. N. Pudovik, I. V. Konovalova, L. A. Burnaeva, Synthesis 1986, 793.
- ⁶⁾ A. S. Tarasevich, I. E. Boldeskul, V. P. Kukhar, Usp. Khim. 55 (1986) 1344 [Russian Chem. Rev. 55 (1986) 758].
- ¹ J. Heine, R. Francke, G.-V. Röschenthalor, *Chem.-Ztg.* **112** (1988) 146.
- ⁸⁾ R. Francke, G.-V. Röschenthaler, *Phosphorus Sulfur* **36** (1988) 125.

- ⁹⁾ F. Francke, G.-V. Röschenthaler, unveröffentlichte Untersuchungen.
- ¹⁰ I. V. Konovalova, R. D. Gareev, L. A. Burnaeva, N. K. Novikova, T. A. Faskhutdinova, A. N. Pudovik, Zh. Obshch. Khim. 50 (1980) 1451.
- ¹¹⁾ Zh. M. Ivanova, E. A. Stukalo, G. J. Derkach, Zh. Obshch. Khim. 38 (1969) 551.
- ¹²⁾ R. Francke, G.-V. Röschenthaler, Z. Anorg. Allg. Chem., zur Veröffentlichung eingereicht.
 ¹³⁾ W. S. Sheldrick, *Top. Curr. Chem.* 73 (1978) 1.
 ¹⁴⁾ W. S. Sheldrick und R. Schmutzler, unveröffentlichte Ergebnisse.

- ¹⁵⁾ W. S. Sheldrick und K. Schmutzlet, unveronentieme Ergeomsse.
 ¹⁵⁾ H. A. E. Aly, J. H. Barlow, D. R. Russell, D. J. H. Smith, M. Swindles, S. Trippett, J. Chem. Soc., Chem. Commun. 1976, 449.
 ¹⁶⁾ W. S. Sheldrick, Acta Crystallogr., Sect. B, 32, (1976) 925.
- ¹⁷⁾ W. S. Sheldrick, D. Schomburg, A. Schmidpeter, Acta Crystal-logr., Sect. B, 36, (1980) 2316.
 ¹⁸⁾ R. G. Cavell in Methods in Stereochemical Analysis (J. G. Ver-
- kade, L. D. Quin, Eds.), Bd. 8, S. 236, VCH Publishers, Weinheim 1987.
- ¹⁹⁾ G. Buono, J. R. Llinas, J. Am. Chem. Soc. 103 (1981) 4532.
 ²⁰⁾ J. Emsley, D. Hall, The Chemistry of Phosphorus, S. 70-72, Harper & Row, Publishers, London 1976. ²¹ Strukturfaktorlisten sind auf Wunsch bei den Autoren abrufbar
- (W. S. S.). Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53235, der Autoren und des Zeitschriftenzitats angefordert werden.

[203/88]